

Introduction
to

Programming in Java

S E C O N D E D I T I O N

This page intentionally left blank

Introduction
to

Programming in Java

An Interdisciplinary Approach

S E C O N D E D I T I O N

Robert Sedgewick
Kevin Wayne

Princeton University

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2017934241

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms, and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please
visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-672-33784-0
ISBN-10: 0-672-33784-3

1 17

http://www.pearsoned.com/permissions/

To Adam, Andrew, Brett, Robbie,

Henry, Iona, Peter, Rose,

and especially Linda

To Jackie, Alex, and Michael

vii

Contents

Programs . viii

Preface . xi

1—Elements of Programming 1
1.1 Your First Program 2
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops 50
1.4 Arrays 90
1.5 Input and Output 126
1.6 Case Study: Random Web Surfer 170

2—Functions and Modules 191
2.1 Defining Functions 192
2.2 Libraries and Clients 226
2.3 Recursion 262
2.4 Case Study: Percolation 300

3—Object-Oriented Programming 329
3.1 Using Data Types 330
3.2 Creating Data Types 382
3.3 Designing Data Types 428
3.4 Case Study: N-Body Simulation 478

4—Algorithms and Data Structures 493
4.1 Performance 494
4.2 Sorting and Searching 532
4.3 Stacks and Queues 566
4.4 Symbol Tables 624
4.5 Case Study: Small-World Phenomenon 670

Context .715

Glossary .721

Index .729

APIs .751

Functions and Modules

Defining Functions
2.1.1 Harmonic numbers (revisited) 194
2.1.2 Gaussian functions 203
2.1.3 Coupon collector (revisited) . . 206
2.1.4 Play that tune (revisited) 213

Libraries and Clients
2.2.1 Random number library 234
2.2.2 Array I/O library 238
2.2.3 Iterated function systems 241
2.2.4 Data analysis library 245
2.2.5 Plotting data values in an array 247
2.2.6 Bernoulli trials 250

Recursion
2.3.1 Euclid’s algorithm. 267
2.3.2 Towers of Hanoi 270
2.3.3 Gray code 275
2.3.4 Recursive graphics 277
2.3.5 Brownian bridge 279
2.3.6 Longest common subsequence 287

Case Study: Percolation
2.4.1 Percolation scaffolding. 304
2.4.2 Vertical percolation detection . . 306
2.4.3 Visualization client 309
2.4.4 Percolation probability estimate 311
2.4.5 Percolation detection 313
2.4.6 Adaptive plot client 316

Elements of Programming

Your First Program
1.1.1 Hello, World 4
1.1.2 Using a command-line argument 7

Built-in Types of Data
1.2.1 String concatenation 20
1.2.2 Integer multiplication and division 23
1.2.3 Quadratic formula 25
1.2.4 Leap year 28
1.2.5 Casting to get a random integer . . 34

Conditionals and Loops
1.3.1 Flipping a fair coin 53
1.3.2 Your first while loop 55
1.3.3 Computing powers of 2 57
1.3.4 Your first nested loops 63
1.3.5 Harmonic numbers 65
1.3.6 Newton’s method 66
1.3.7 Converting to binary 68
1.3.8 Gambler’s ruin simulation 71
1.3.9 Factoring integers 73

Arrays
1.4.1 Sampling without replacement . . 98
1.4.2 Coupon collector simulation . . 102
1.4.3 Sieve of Eratosthenes 104
1.4.4 Self-avoiding random walks . . 113

Input and Output
1.5.1 Generating a random sequence 128
1.5.2 Interactive user input 136
1.5.3 Averaging a stream of numbers 138
1.5.4 A simple filter 140
1.5.5 Standard input-to-drawing filter 147
1.5.6 Bouncing ball 153
1.5.7 Digital signal processing 158

Case Study: Random Web Surfer
1.6.1 Computing the transition matrix 173
1.6.2 Simulating a random surfer . . 175
1.6.3 Mixing a Markov chain 182

Programs

viii

Algorithms and Data Structures

Performance
4.1.1 3-sum problem 497
4.1.2 Validating a doubling hypothesis 499

Sorting and Searching
4.2.1 Binary search (20 questions) . . 534
4.2.2 Bisection search 537
4.2.3 Binary search (sorted array) . . 539
4.2.4 Insertion sort 547
4.2.5 Doubling test for insertion sort 549
4.2.6 Mergesort 552
4.2.7 Frequency counts 557

Stacks and Queues
4.3.1 Stack of strings (array). 570
4.3.2 Stack of strings (linked list) . . . 575
4.3.3 Stack of strings (resizing array) 579
4.3.4 Generic stack 584
4.3.5 Expression evaluation 588
4.3.6 Generic FIFO queue (linked list) 594
4.3.7 M/M/1 queue simulation . . . 599
4.3.8 Load balancing simulation . . . 607

Symbol Tables
4.4.1 Dictionary lookup 631
4.4.2 Indexing. 633
4.4.3 Hash table 638
4.4.4 Binary search tree 646
4.4.5 Dedup filter 653

Case Study: Small-World Phenomenon
4.5.1 Graph data type 677
4.5.2 Using a graph to invert an index 681
4.5.3 Shortest-paths client 685
4.5.4 Shortest-paths implementation 691
4.5.5 Small-world test 696
4.5.6 Performer–performer graph . . 698

Object-Oriented Programming

Using Data Types
3.1.1 Identifying a potential gene . . 337
3.1.2 Albers squares 342
3.1.3 Luminance library 345
3.1.4 Converting color to grayscale . . 348
3.1.5 Image scaling 350
3.1.6 Fade effect 352
3.1.7 Concatenating files 356
3.1.8 Screen scraping for stock quotes 359
3.1.9 Splitting a file 360

Creating Data Types
3.2.1 Charged particle 387
3.2.2 Stopwatch 391
3.2.3 Histogram 393
3.2.4 Turtle graphics 396
3.2.5 Spira mirabilis 399
3.2.6 Complex number 405
3.2.7 Mandelbrot set 409
3.2.8 Stock account 413

Designing Data Types
3.3.1 Complex number (alternate) . . 434
3.3.2 Counter 437
3.3.3 Spatial vectors 444
3.3.4 Document sketch 461
3.3.5 Similarity detection 463

Case Study: N-Body Simulation
3.4.1 Gravitational body 482
3.4.2 N-body simulation 485

ix

xi

Preface

THE BASIS FOR EDUCATION IN THE last millennium was “reading, writing, and arith-
metic”; now it is reading, writing, and computing. Learning to program is an

essential part of the education of every student in the sciences and engineering.
Beyond direct applications, it is the first step in understanding the nature of com-
puter science’s undeniable impact on the modern world. This book aims to teach
programming to those who need or want to learn it, in a scientific context.

Our primary goal is to empower students by supplying the experience and
basic tools necessary to use computation effectively. Our approach is to teach stu-
dents that composing a program is a natural, satisfying, and creative experience.
We progressively introduce essential concepts, embrace classic applications from
applied mathematics and the sciences to illustrate the concepts, and provide op-
portunities for students to write programs to solve engaging problems.

We use the Java programming language for all of the programs in this book—
we refer to “Java” after “programming in the title to emphasize the idea that the
book is about fundamental concepts in programming, not Java per se. This book
teaches basic skills for computational problem solving that are applicable in many
modern computing environments, and is a self-contained treatment intended for
people with no previous experience in programming.

This book is an interdisciplinary approach to the traditional CS1 curriculum,
in that we highlight the role of computing in other disciplines, from materials sci-
ence to genomics to astrophysics to network systems. This approach emphasizes
for students the essential idea that mathematics, science, engineering, and com-
puting are intertwined in the modern world. While it is a CS1 textbook designed
for any first-year college student, the book also can be used for self-study or as a
supplement in a course that integrates programming with another field.

xii

Coverage The book is organized around four stages of learning to program: ba-
sic elements, functions, object-oriented programming, and algorithms (with data
structures). We provide the basic information readers need to build confidence in
their ability to compose programs at each level before moving to the next level. An
essential feature of our approach is the use of example programs that solve intrigu-
ing problems, supported with exercises ranging from self-study drills to challeng-
ing problems that call for creative solutions.

Basic elements include variables, assignment statements, built-in types of data,
flow of control, arrays, and input/output, including graphics and sound.

Functions and modules are the student’s first exposure to modular program-
ming. We build upon familiarity with mathematical functions to introduce Java
functions, and then consider the implications of programming with functions, in-
cluding libraries of functions and recursion. We stress the fundamental idea of
dividing a program into components that can be independently debugged, main-
tained, and reused.

Object-oriented programming is our introduction to data abstraction. We em-
phasize the concepts of a data type and their implementation using Java’s class
mechanism. We teach students how to use, create, and design data types. Modu-
larity, encapsulation, and other modern programming paradigms are the central
concepts of this stage.

Algorithms and data structures combine these modern programming para-
digms with classic methods of organizing and processing data that remain effective
for modern applications. We provide an introduction to classical algorithms for
sorting and searching as well as fundamental data structures and their application,
emphasizing the use of the scientific method to understand performance charac-
teristics of implementations.

Applications in science and engineering are a key feature of the text. We moti-
vate each programming concept that we address by examining its impact on spe-
cific applications. We draw examples from applied mathematics, the physical and
biological sciences, and computer science itself, and include simulation of physical
systems, numerical methods, data visualization, sound synthesis, image process-
ing, financial simulation, and information technology. Specific examples include a
treatment in the first chapter of Markov chains for web page ranks and case stud-
ies that address the percolation problem, n-body simulation, and the small-world
phenomenon. These applications are an integral part of the text. They engage stu-
dents in the material, illustrate the importance of the programming concepts, and
provide persuasive evidence of the critical role played by computation in modern
science and engineering.

xiii

Our primary goal is to teach the specific mechanisms and skills that are need-
ed to develop effective solutions to any programming problem. We work with com-
plete Java programs and encourage readers to use them. We focus on programming
by individuals, not programming in the large.

Related texts This book is the second edition of our 2008 text that incorporates
hundreds of improvements discovered during another decade of teaching the ma-
terial, including, for example, a new treatment of hashing algorithms.

The four chapters in this book are identical to the first four chapters of our
text Computer Science: An Interdisciplinary Approach. That book is a full introduc-
tory course on computer science that contains additional chapters on the theory of
computing, machine-language programming, and machine architecture. We have
published this book separately to meet the needs of people who are interested only
in the Java programming content. We also have published a version of this book
that is based on Python programming.

The chapters in this volume are suitable preparation for our book Algorithms,
Fourth Edition, which is a thorough treatment of the most important algorithms
in use today.

Use in the curriculum This book is suitable for a first-year college course
aimed at teaching novices to program in the context of scientific applications.
Taught from this book, any college student will learn to program in a familiar con-
text. Students completing a course based on this book will be well prepared to ap-
ply their skills in later courses in their chosen major and to recognize when further
education in computer science might be beneficial.

Instructors interested in a full-year course (or a fast-paced one-semester
course with broader coverage) should instead consider adopting Computer Science:
An Interdisciplinary Approach.

Prospective computer science majors, in particular, can benefit from learning
to program in the context of scientific applications. A computer scientist needs the
same basic background in the scientific method and the same exposure to the role
of computation in science as does a biologist, an engineer, or a physicist.

Indeed, our interdisciplinary approach enables colleges and universities to
teach prospective computer science majors and prospective majors in other fields
in the same course. We cover the material prescribed by CS1, but our focus on ap-
plications brings life to the concepts and motivates students to learn them. Our
interdisciplinary approach exposes students to problems in many different disci-
plines, helping them to choose a major more wisely.

xiv

Whatever the specific mechanism, the use of this book is best positioned early
in the curriculum. This positioning allows us to leverage familiar material in high
school mathematics and science. Moreover, students who learn to program early in
their college curriculum will then be able to use computers more effectively when
moving on to courses in their specialty. Like reading and writing, programming
is certain to be an essential skill for any scientist or engineer. Students who have
grasped the concepts in this book will continually develop that skill through a life-
time, reaping the benefits of exploiting computation to solve or to better under-
stand the problems and projects that arise in their chosen field.

Prerequisites This book is suitable for typical first-year college students. In
other words, we do not expect preparation beyond what is typically required for
other entry-level science and mathematics courses.

Mathematical maturity is important. While we do not dwell on mathematical
material, we do refer to the mathematics curriculum that students have taken in
high school, including algebra, geometry, and trigonometry. Most students in our
target audience automatically meet these requirements. Indeed, we take advantage
of familiarity with this curriculum to introduce basic programming concepts.

Scientific curiosity is also an essential ingredient. Science and engineering stu-
dents bring with them a sense of fascination with the ability of scientific inquiry to
help explain what occurs in nature. We leverage this predilection with examples of
simple programs that speak volumes about the natural world. We do not assume
any specific knowledge beyond that provided by typical high school courses in
mathematics, physics, biology, or chemistry.

Programming experience is not necessary, but also is not harmful. Teaching
programming is our primary goal, so we assume no prior programming experi-
ence. Nevertheless, composing a program to solve a new problem is a challenging
intellectual task, so students who have written numerous programs in high school
can benefit from taking an introductory programming course based on this book.
The book can support teaching students with varying backgrounds because the ap-
plications appeal to both novices and experts alike.

Experience using a computer is not necessary, but also is not at all a problem.
College students use computers regularly—to communicate with friends and rela-
tives, to listen to music, to process photos, and as part of many other activities. The
realization that they can harness the power of their own computer in interesting
and important ways is an exciting and lasting lesson.

xv

Goals We cover the CS1 curriculum, but anyone who has taught an introduc-
tory programming course knows that expectations of instructors in later cours-
es are typically high: Each instructor expects all students to be familiar with the
computing environment and approach that he or she wants to use. For example, a
physics professor might expect students to design a program over the weekend to
run a simulation; a biology professor might expect students to be able to analyze
genomes; or a computer science professor might expect knowledge of the details
of a particular programming environment. Is it realistic to meet such diverse ex-
pectations? Is it realistic to offer a single introductory CS course for all students, as
opposed to a different introductory course for each set of students?

With this book, and decades of experience at Princeton and other institutions
that have adopted earlier versions, we answer these questions with a resounding
yes. The most important reason to do so is that this approach encourages diversity.
By keeping interesting applications at the forefront, we can keep advanced students
engaged, and by avoiding classifying students at the beginning, we can ensure that
every student who successfully masters this material is prepared for further study.

What can teachers of upper-level college courses expect of students who have
completed a course based on this book?

This is a common introductory treatment of programming, which is analo-
gous to commonly accepted introductory courses in mathematics, physics, biology,
economics, or chemistry. An Introduction to Programming in Java strives to pro-
vide the basic preparation needed by all college students, while sending the clear
message that there is much more to understand about computer science than just
programming. Instructors teaching students who have studied from this book can
expect that they will have the knowledge and experience necessary to enable them
to effectively exploit computers in diverse applications.

What can students who have completed a course based on this book expect to
accomplish in later courses?

Our message is that programming is not difficult to learn and that harness-
ing the power of the computer is rewarding. Students who master the material in
this book are prepared to address computational challenges wherever they might
appear later in their careers. They learn that modern programming environments,
such as the one provided by Java, help open the door to any computational prob-
lem they might encounter later, and they gain the confidence to learn, evaluate, and
use other computational tools. Students interested in computer science will be well
prepared to pursue that interest; students in other fields will be ready to integrate
computation into their studies.

xvi

Online lectures A complete set of studio-produced videos that can be used in
conjunction with this text is available at

http://www.informit.com/title/9780134493831

As with traditional live lectures, the purpose is to inform and inspire, motivating
students to study and learn from the text. Our experience is that student engage-
ment with such online material is significantly better than with live lectures be-
cause of the ability to play the lectures at a chosen speed and to replay and review
the lectures at any time.

Booksite An extensive body of other information that supplements this text
may be found on the web at

http://introcs.cs.princeton.edu/java

For economy, we refer to this site as the booksite throughout. It contains material
for instructors, students, and casual readers of the book. We briefly describe this
material here, though, as all web users know, it is best surveyed by browsing. With
a few exceptions to support testing, the material is all publicly available.

The booksite contains a condensed version of the text narrative for reference
while online, hundreds of exercises and programming problems (some with solu-
tions), hundreds of easily downloadable Java programs, real-world data sets, and
our I/O libraries for processing text, graphics, and sound. It is the web presence
associated with the book and is a living document that is accessed millions of times
per year. It is an essential resource for everyone who owns this book and is critical
to our goal of making computer science an integral component of the education
of all college students.

One of the most important implications of the booksite is that it empowers
teachers and students to use their own computers to teach and learn the material.
Anyone with a computer and a browser can begin learning to program by following
a few instructions on the booksite. The process is no more difficult than download-
ing a media player or a song.

For teachers, the booksite contains resources for teaching that (together with
the book and the studio-produced videos) are sufficiently flexible to support many
of the models for teaching that are emerging as teachers embrace technology in the
21st century. For example, at Princeton, our teaching style was for many years based
on offering two lectures per week to a large audience, supplemented by two class
sessions per week where students meet in small groups with instructors or teaching

http://www.informit.com/title/9780134493831
http://www.introcs.cs.princeton.edu/java

xvii

assistants. More recently, we have moved to a model where students watch lectures
online and we hold class meetings once a week in addition to the two class sessions.
Other teachers may work completely online. Still others may use a “flipped” model
involving enrichment of the lectures after students watch them.

For students, the booksite contains quick access to much of the material in the
book, including source code, plus extra material to encourage self-learning. Solu-
tions are provided for many of the book’s exercises, including complete program
code and test data. There is a wealth of information associated with programming
assignments, including suggested approaches, checklists, FAQs, and test data.

For casual readers, the booksite is a resource for accessing all manner of extra
information associated with the book’s content. All of the booksite content pro-
vides web links and other routes to pursue more information about the topic under
consideration. There is far more information accessible than any individual could
fully digest, but our goal is to provide enough to whet any reader’s appetite for
more information about the book’s content.

Acknowledgments This project has been under development since 1992, so
far too many people have contributed to its success for us to acknowledge them all
here. Special thanks are due to Anne Rogers, for helping to start the ball rolling; to
Dave Hanson, Andrew Appel, and Chris van Wyk, for their patience in explaining
data abstraction; and to Lisa Worthington and Donna Gabai, for being the first to
truly relish the challenge of teaching this material to first-year students. We also
gratefully acknowledge the efforts of /dev/126 ; the faculty, graduate students, and
teaching staff who have dedicated themselves to teaching this material over the past
25 years here at Princeton University; and the thousands of undergraduates who
have dedicated themselves to learning it.

 Robert Sedgewick
 Kevin Wayne

 February 2017

Chapter One

1

OUR GOAL IN THIS CHAPTER IS to convince you that writing a program is easier than
writing a piece of text, such as a paragraph or essay. Writing prose is difficult:

we spend many years in school to learn how to do it. By contrast, just a few build-
ing blocks suffice to enable us to write programs that can help solve all sorts of
fascinating, but otherwise unapproachable, problems. In this chapter, we take you
through these building blocks, get you started on programming in Java, and study
a variety of interesting programs. You will be able to express yourself (by writing
programs) within just a few weeks. Like the ability to write prose, the ability to pro-
gram is a lifetime skill that you can continually refine well into the future.

In this book, you will learn the Java programming language. This task will be
much easier for you than, for example, learning a foreign language. Indeed, pro-
gramming languages are characterized by only a few dozen vocabulary words and
rules of grammar. Much of the material that we cover in this book could be ex-
pressed in the Python or C++ languages, or any of several other modern program-
ming languages. We describe everything specifically in Java so that you can get
started creating and running programs right away. On the one hand, we will focus
on learning to program, as opposed to learning details about Java. On the other
hand, part of the challenge of programming is knowing which details are relevant
in a given situation. Java is widely used, so learning to program in this language
will enable you to write programs on many computers (your own, for example).
Also, learning to program in Java will make it easy for you to learn other languages,
including lower-level languages such as C and specialized languages such as Matlab.

1.1 Your First Program 2
1.2 Built-in Types of Data 14
1.3 Conditionals and Loops. 50
1.4 Arrays 90
1.5 Input and Output 126
1.6 Case Study: Random Web Surfer. . . 170

Elements of Programming

Elements of Programming

1.1 Your First Program

IN THIS SECTION, OUR PLAN IS to lead you into the world of Java programming by tak-
ing you through the basic steps required to get a simple program running. The
Java platform (hereafter abbreviated Java) is a collection of applications, not unlike
many of the other applications that you
are accustomed to using (such as your
word processor, email program, and web
browser). As with any application, you
need to be sure that Java is properly in-
stalled on your computer. It comes pre-
loaded on many computers, or you can download it easily. You also need a text
editor and a terminal application. Your first task is to find the instructions for in-
stalling such a Java programming environment on your computer by visiting

http://introcs.cs.princeton.edu/java

We refer to this site as the booksite. It contains an extensive amount of supplemen-
tary information about the material in this book for your reference and use while
programming.

Programming in Java To introduce you to developing Java programs, we
break the process down into three steps. To program in Java, you need to:

• Create a program by typing it into a file named, say, MyProgram.java.
• Compile it by typing javac MyProgram.java in a terminal window.
• Execute (or run) it by typing java MyProgram in the terminal window.

In the first step, you start with a blank screen and end with a sequence of typed
characters on the screen, just as when you compose an email message or an essay.
Programmers use the term code to refer to program text and the term coding to re-
fer to the act of creating and editing the code. In the second step, you use a system
application that compiles your program (translates it into a form more suitable for
the computer) and puts the result in a file named MyProgram.class. In the third
step, you transfer control of the computer from the system to your program (which
returns control back to the system when finished). Many systems have several dif-
ferent ways to create, compile, and execute programs. We choose the sequence giv-
en here because it is the simplest to describe and use for small programs.

1.1.1 Hello, World 4
1.1.2 Using a command-line argument . . 7

Programs in this section

http://www.introcs.cs.princeton.edu/java

31.1 Your First Program

Creating a program. A Java program is nothing more than a sequence of charac-
ters, like a paragraph or a poem, stored in a file with a .java extension. To create
one, therefore, you need simply define that sequence of characters, in the same way
as you do for email or any other computer application. You can use any text editor
for this task, or you can use one of the more sophisticated integrated development
environments described on the booksite. Such environments are overkill for the
sorts of programs we consider in this book, but they are not difficult to use, have
many useful features, and are widely used by professionals.

Compiling a program. At first, it might seem that Java is designed to be best un-
derstood by the computer. To the contrary, the language is designed to be best
understood by the programmer—that’s you. The computer’s language is far more
primitive than Java. A compiler is an application that translates a program from the
Java language to a language more suitable for execution on the computer. The com-
piler takes a file with a .java extension as input (your program) and produces a
file with the same name but with a .class extension (the computer-language ver-
sion). To use your Java compiler, type in a terminal window the javac command
followed by the file name of the program you want to compile.

Executing (running) a program. Once you compile the program, you can ex-
ecute (or run) it. This is the exciting part, where your program takes control of your
computer (within the constraints of what Java allows). It is perhaps more accurate
to say that your computer follows your instructions. It is even more accurate to say
that a part of Java known as the Java virtual machine (JVM, for short) directs your
computer to follow your instructions. To use the JVM to execute your program,
type the java command followed by the program name in a terminal window.

your program
(a text file)

computer-language
version of your program

type javac HelloWorld.java
to compile your program

use any text editor to
create your program

type java HelloWorld
to execute your program

output

Developing a Java program

editor compiler JVMHelloWorld.java HelloWorld.class "Hello, World"

4 Elements of Programming

% javac HelloWorld.java

% java HelloWorld
Hello, World

PROGRAM 1.1.1 is an example of a complete Java program. Its name is
HelloWorld, which means that its code resides in a file named HelloWorld.java
(by convention in Java). The program’s sole action is to print a message to the ter-
minal window. For continuity, we will use some standard Java terms to describe the
program, but we will not define them until later in the book: PROGRAM 1.1.1 con-
sists of a single class named HelloWorld that has a single method named main().
(When referring to a method in the text, we use () after the name to distinguish it
from other kinds of names.) Until SECTION 2.1, all of our classes will have this same
structure. For the time being, you can think of “class” as meaning “program.”

Program 1.1.1 Hello, World

public class HelloWorld
{
 public static void main(String[] args)
 {
 // Prints "Hello, World" in the terminal window.
 System.out.println("Hello, World");
 }
}

This code is a Java program that accomplishes a simple task. It is traditionally a beginner’s first
program. The box below shows what happens when you compile and execute the program. The
terminal application gives a command prompt (% in this book) and executes the commands
that you type (javac and then java in the example below). Our convention is to highlight in
boldface the text that you type and display the results in regular face. In this case, the result is
that the program prints the message Hello, World in the terminal window.

51.1 Your First Program

The first line of a method specifies its name and other information; the rest
is a sequence of statements enclosed in curly braces, with each statement typical-
ly followed by a semicolon. For the time being, you can think of “programming”
as meaning “specifying a class name and a sequence of statements for its main()
method,” with the heart of the program consisting of the sequence of statements in
the main() method (its body). PROGRAM 1.1.1 contains two such statements:

• The first statement is a comment, which serves to document the program.
In Java a single-line comment begins with two '/' characters and extends to
the end of the line. In this book, we display comments in gray. Java ignores
comments—they are present only for human readers of the program.

• The second statement is a print statement. It calls the method named
System.out.println() to print a text message—the one specified be-
tween the matching double quotes—to the terminal window.

In the next two sections, you will learn about many different kinds of statements
that you can use to make programs. For the moment, we will use only comments
and print statements, like the ones in HelloWorld.

When you type java followed by a class name in your terminal window, the
system calls the main() method that you defined in that class, and executes its
statements in order, one by one. Thus, typing java HelloWorld causes the system
to call the main() method in PROGRAM 1.1.1 and execute its two statements. The
first statement is a comment, which Java ignores. The second statement prints the
specified message to the terminal window.

main() method

body

name

statements

Anatomy of a program

 text file named HelloWorld.java

public class HelloWorld
{
 public static void main(String[] args)
 {
 // Prints "Hello, World" in the terminal window.
 System.out.print("Hello, World");
 }
}

6 Elements of Programming

Since the 1970s, it has been a tradition that a beginning programmer’s first
program should print Hello, World. So, you should type the code in PROGRAM
1.1.1 into a file, compile it, and execute it. By doing so, you will be following in the
footsteps of countless others who have learned how to program. Also, you will be
checking that you have a usable editor and terminal application. At first, accom-
plishing the task of printing something out in a terminal window might not seem
very interesting; upon reflection, however, you will see that one of the most basic
functions that we need from a program is its ability to tell us what it is doing.

For the time being, all our program code will be just like PROGRAM 1.1.1, ex-
cept with a different sequence of statements in main(). Thus, you do not need to
start with a blank page to write a program. Instead, you can

• Copy HelloWorld.java into a new file having a new program name of
your choice, followed by .java.

• Replace HelloWorld on the first line with the new program name.
• Replace the comment and print statements with a different sequence of

statements.
Your program is characterized by its sequence of statements and its name. Each
Java program must reside in a file whose name matches the one after the word
class on the first line, and it also must have a .java extension.

Errors. It is easy to blur the distinctions among editing, compiling, and executing
programs. You should keep these processes separate in your mind when you are
learning to program, to better understand the effects of the errors that inevitably
arise.

You can fix or avoid most errors by carefully examining the program as you
create it, the same way you fix spelling and grammatical errors when you compose
an email message. Some errors, known as compile-time errors, are identified when
you compile the program, because they prevent the compiler from doing the trans-
lation. Other errors, known as run-time errors, do not show up until you execute
the program.

In general, errors in programs, also commonly known as bugs, are the bane of
a programmer’s existence: the error messages can be confusing or misleading, and
the source of the error can be very hard to find. One of the first skills that you will
learn is to identify errors; you will also learn to be sufficiently careful when coding,
to avoid making many of them in the first place. You can find several examples of
errors in the Q&A at the end of this section.

71.1 Your First Program

Input and output Typically, we want to provide input to our programs—that
is, data that they can process to produce a result. The simplest way to provide in-
put data is illustrated in UseArgument (PROGRAM 1.1.2). Whenever you execute the
program UseArgument, it accepts the command-line argument that you type after
the program name and prints it back out to the terminal window as part of the
message. The result of executing this program depends on what you type after the
program name. By executing the program with different command-line arguments,
you produce different printed results. We will discuss in more detail the mechanism
that we use to pass command-line arguments to our programs later, in SECTION 2.1.
For now it is sufficient to understand that args[0] is the first command-line argu-
ment that you type after the program name, args[1] is the second, and so forth.
Thus, you can use args[0] within your program’s body to represent the first string
that you type on the command line when it is executed, as in UseArgument.

% javac UseArgument.java

% java UseArgument Alice
Hi, Alice. How are you?

% java UseArgument Bob
Hi, Bob. How are you?

Program 1.1.2 Using a command-line argument

public class UseArgument
{
 public static void main(String[] args)
 {
 System.out.print("Hi, ");
 System.out.print(args[0]);
 System.out.println(". How are you?");
 }
}

This program shows the way in which we can control the actions of our programs: by providing
an argument on the command line. Doing so allows us to tailor the behavior of our programs.

8 Elements of Programming

In addition to the System.out.println() method, UseArgument calls the
System.out.print() method. This method is just like System.out.println(),
but prints just the specified string (and not a newline character).

Again, accomplishing the task of getting a program to print back out what we
type in to it may not seem interesting at first, but upon reflection you will realize
that another basic function of a program is its ability to respond to basic infor-
mation from the user to control what the program does. The simple model that
UseArgument represents will suffice to allow us to consider Java’s basic program-
ming mechanism and to address all sorts of interesting computational problems.

Stepping back, we can see that UseArgument does neither more nor less than
implement a function that maps a string of characters (the command-line argu-
ment) into another string of characters (the message printed back to the terminal
window). When using it, we might think of our Java program as a black box that
converts our input string to some output string.

This model is attractive because it is not only
simple but also sufficiently general to allow comple-
tion, in principle, of any computational task. For
example, the Java compiler itself is nothing more
than a program that takes one string of characters as
input (a .java file) and produces another string of
characters as output (the corresponding .class file).
Later, you will be able to write programs that accom-
plish a variety of interesting tasks (though we stop
short of programs as complicated as a compiler). For
the moment, we will live with various limitations on
the size and type of the input and output to our programs; in SECTION 1.5, you will
see how to incorporate more sophisticated mechanisms for program input and
output. In particular, you will see that we can work with arbitrarily long input and
output strings and other types of data such as sound and pictures.

input stringAlice

Hi, Alice. How are you?

black box

output string

A bird’s-eye view of a Java program

91.1 Your First Program

Q&A

Q. Why Java?

A. The programs that we are writing are very similar to their counterparts in sev-
eral other languages, so our choice of language is not crucial. We use Java because
it is widely available, embraces a full set of modern abstractions, and has a variety
of automatic checks for mistakes in programs, so it is suitable for learning to pro-
gram. There is no perfect language, and you certainly will be programming in other
languages in the future.

Q. Do I really have to type in the programs in the book to try them out? I believe
that you ran them and that they produce the indicated output.

A. Everyone should type in and run HelloWorld. Your understanding will be
greatly magnified if you also run UseArgument, try it on various inputs, and modi-
fy it to test different ideas of your own. To save some typing, you can find all of the
code in this book (and much more) on the booksite. This site also has information
about installing and running Java on your computer, answers to selected exercises,
web links, and other extra information that you may find useful while program-
ming.

Q. What is the meaning of the words public, static, and void?

A. These keywords specify certain properties of main() that you will learn about
later in the book. For the moment, we just include these keywords in the code (be-
cause they are required) but do not refer to them in the text.

Q. What is the meaning of the //, /*, and */ character sequences in the code?

A. They denote comments, which are ignored by the compiler. A comment is either
text in between /* and */ or at the end of a line after //. Comments are indis-
pensable because they help other programmers to understand your code and even
can help you to understand your own code in retrospect. The constraints of the
book format demand that we use comments sparingly in our programs; instead
we describe each program thoroughly in the accompanying text and figures. The
programs on the booksite are commented to a more realistic degree.

